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Abstract—Integer forcing is an equalization scheme for the
multiple-input multiple-output communication channel that is
applicable when all data streams are encoded using a common lin-
ear code. The scheme has been demonstrated to allow operating
close to capacity for “most” channel matrices. In this work, the
measure of “bad” channels is quantified by considering the outage
probability of integer forcing, where random unitary precoding
is applied at the transmitter side, and where the transmitter only
knows the mutual information of the channel.

I. INTRODUCTION

The Multiple-Input Multiple-Output (MIMO) Gaussian

channel is central to modern communication and has been

extensively studied over the past several decades. Nonetheless,

while the capacity limits, under different assumptions on the

availability of channel state information, are well understood,

the design of low-complexity communication schemes that

approach these limits still poses challenges in some scenarios.

For a static channel and a single-user closed-loop setting,

capacity may be approached at reasonable complexity. For

instance, one may use the singular-value decomposition (SVD)

to transform the channel into parallel scalar additive white

Gaussian noise (AWGN) channels, over which standard codes

may be employed. Alternatively, standard scalar codes may

be used in conjunction with the QR matrix decomposition

and successive interference cancelation (SIC) decoding, see,

e.g., [1]. Coding for MIMO channels in an ergodic fading

environment is more involved but has also been successfully

addressed. See, e.g., [2].

In contrast, the focus of this paper is on static MIMO

channels where the transmitter only knows (or may only utilize

its knowledge of) the mutual information of the channel.

More specifically, we address the problem of coding over

a compound MIMO channel, as is the case in multicast

communication.

The design of a practical coding scheme for a compound

MIMO channel using an architecture employing space-time

linear processing at the transmitter side and integer-forcing

(IF) equalization at the receiver side was proposed in [3]. It

was shown that such an architecture universally achieves the

MIMO capacity up to a constant gap, provided that the space-

time precoding satisfies the non-vanishing determinant (NVD)

criterion. The derived gap, however, is large and thus is of

limited practical value.

In the present work, we retain the general architecture of

[3], but study its performance when random unitary precod-

ing is applied over the spatial dimension only. Rather than

aiming at guaranteeing successful transmission, we study the

outage probability of the scheme. Applying random precoding

converts the static channel to an effective stochastic one.

Further, drawing the precoding matrix from the isotropic

unitary ensemble ensures that all channels having the same

mutual information for isotropic signaling, will have the same

outage probability; see, e.g., [4].

The outage probability in the considered setting thus cor-

responds to a “scheme outage”. Namely, it is the probability

that a random precoding matrix results in an effective channel

for which the rate achievable with an IF receiver is lower

than the target rate. In order to provide universal performance

guarantees, we study the worst-case outage probability w.r.t.

all possible singular value combinations corresponding to a

given mutual information. Thus, the performance guarantee

does not depend on channel statistics.

II. CHANNEL MODEL AND PROBLEM FORMULATION

The single-user (complex) MIMO channel is described by1

yc = Hcxc + zc, (1)

where xc ∈ CNt is the channel input vector, yc ∈ CNr is

the channel output vector, Hc is an Nr×Nt complex channel

matrix, and zc is an additive noise vector of i.i.d. unit variance

circularly symmetric complex Gaussian random variables. The

input vector xc is subject to the power constraint2

E(xH
c xc) ≤ Nt · SNR.

We assume that the channel is fixed throughout the whole

transmission period.

The mutual information of the channel (1) is maximized

by a Gaussian input [5] with covariance matrix Q satisfying

Tr(Q) = NtSNR, and is given by

C = max
Q:Tr(Q)≤NtSNR

log det
(
INr×Nr

+HcQHH
c

)
. (2)

1We denote all complex variables with c to distinguish them from their
real-valued representation.

2We denote by [·]T , the transpose of a vector/matrix and by [·]H , the
Hermitian transpose.
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For ease of notation, in the sequel we set SNR = 1, i.e.,
we “absorb” the SNR into the channel matrix. Thus, we may

impose the constraint Tr(Q) ≤ Nt and replace Hc in (2) with

H̄c = Hc

√
SNR and (with abuse of notation) we omit the

bar. The choice of Q that maximizes (2) is determined by the

water-filling solution. When the matrix Hc is known at both

transmission ends, i.e., in a closed-loop scenario, this mutual

information is the capacity of the channel.

It will prove useful to consider the mutual informa-

tion achievable with a “white” input. Specifically, taking

Q = INt×Nt
, the white-input (WI) mutual information is

given by

CWI = log det
(
I+HcH

H
c

)
. (3)

We may define the set

H(CWI) =
{
Hc ∈ C

Nr×Nt : log det
(
I+HcH

H
c

)
= CWI

}
,

of all channel matrices with the same WI mutual information

CWI.

The corresponding compound channel model is defined by

(1) with the channel matrix Hc arbitrarily chosen from the set

H(CWI). The matrixHc that was chosen by nature is revealed

to the receiver, but not to the transmitter. Clearly, the capacity

of this compound channel is CWI, and is achieved with a white

Gaussian input.

Employing the IF receiver allows operating “close” to CWI

for “most” but not all matrices Hc ∈ H(CWI). We quantify

the measure of the bad channel matrices by considering outage

events. To that end, denote the achievable rate for a given

channel matrix Hc with an IF receiver as RIF(Hc). An

explicit expression for this rate is given in Section III-A. Since

applying a precoding matrix P results in an effective channel

Hc ·P, it follows that the achievable rate of IF for this channel
is RIF(Hc ·P). Therefore, the worst-case (WC) scheme outage

is defined as

PWC
out (CWI, R) = sup

Hc∈H(CWI)

Pr (RIF(Hc ·P) < R) , (4)

where the probability is over the ensemble of precoding

matrices. The goal of this paper is to quantify the tradeoff

between the transmission rate R and the outage probability of

IF as defined in (4).

III. INTEGER-FORCING: BACKGROUND

A. Single-User Integer-Forcing Equalization

In [6], a receiver architecture scheme coined “integer forc-

ing” was proposed. We recall the achievable rate of this

scheme.

We follow the derivation of [6] and describe integer forcing

over the reals. Channel model (1) can be expressed via its

real-valued representation as
[
Re(yc)
Im(yc)

]

︸ ︷︷ ︸
y

=

[
Re(Hc) −Im(Hc)
Im(Hc) Re(Hc)

]

︸ ︷︷ ︸
H

[
Re(xc)
Im(xc)

]

︸ ︷︷ ︸
x

+

[
Re(zc)
Im(zc)

]

︸ ︷︷ ︸
z

.

This real-valued representation is used in the sequel to derive

performance bounds for the complex channel Hc. Note that

the dimensions of H are 2Nr × 2Nt.

Any real MIMO channel can be described via its singular-

value decomposition (SVD) H = UΣVT . The following

eigenvalue decomposition can thus be easily derived

(I+HTH)−1 = VD−1VT , (5)

where D = I+Σ2. It is shown in [6] that for a given integer

coefficient vector am, the maximal possible rate for decoding

the associated linear combination of messages is

Ram

IF (H) = Ram

IF (D,V) = −1

2
log

(
‖D−1VTam‖2

)
. (6)

By Theorem 3 in [6], transmission with IF equalization can

achieve any rate satisfying R < RIF(H) where

RIF(H) = −Nt log


 min

A∈Z
2Nt×2Nt

detA6=0

max
m

a
T
m(I+HTH)−1

am


 ,

and where A = [a1 · · ·aNt
]
T
.

Let Λ be the lattice spanned by G = D−1/2VT . The

achievable rates of IF may also be described via the successive

minima of this lattice. Recall the definition of successive

minima.

Definition 1. Let Λ(G) be the lattice spanned by the full-

rank matrix G ∈ RK×K . For k = 1, ...,K , we define the k’th
successive minimum as

λk(G) , inf {r : dim (span (Λ(G) ∩ B(0, r))) ≥ k} (7)

where B(0, r) =
{
x ∈ RK : ‖x‖ ≤ r

}
is the closed ball of

radius r around 0. In words, the k’th successive minimum of

a lattice is the minimal radius of a ball centered around 0

that contains k linearly independent lattice points.

Thus, we have

RIF(D,V) = −2Nt
1

2
log

(
λ2
2Nt

(Λ)
)
= Nt log

(
1

λ2
2Nt

(Λ)

)
.

(8)

B. Precoded Integer-Forcing

The transmission scheme considered consists of applying

unitary precoding at the transmitter and IF equalization at the

receiver, and will be referred to as precoded integer-forcing

(P-IF). Precoding may be viewed as generating a “virtual”

channel H̃c = HcP, over which transmission takes place.

Throughout this paper, we assume that the precoding matrix

P = Ṽc is drawn from what is referred to as the “circular

unitary ensemble” (CUE). The ensemble is defined by the

unique distribution on unitary matrices that is invariant under

left and right unitary transformations [7]. That is, given a

randommatrix Ṽc drawn from the CUE, for any unitary matrix

Vc, both ṼcVc and VcṼc are equal in distribution to Ṽc.

The SVD of the precoded channel is

HcṼc = UcΣcV
H
c Ṽc. Since VH

c Ṽc is equal in distribution
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to Ṽc, for the sake of computing outage probabilities, we

may simply assume that VH
c (and also Vc) is drawn from

the CUE.3

We may apply the decomposition (5) to the real-valued

representation of Hc to obtain V and D. It can be shown

(see [8]) that the rates of IF, with or without SIC, of such a

channel come in pairs. Hence, the entries of D come in pairs.

The following lemma is simple to derive (and can be found

in Appendix A of [8]) and will prove useful in characterizing

the performance of P-IF. It expresses the outage probability

of IF for precoding with the CUE in terms of that arising

when precoding is performed using the real circular orthogonal

ensemble (COE).4

Lemma 1. Let O be a real 2Nt × 2Nt matrix drawn from

the COE. When applying a random complex precoding matrix

Vc which is drawn from the CUE (inducing a real-valued

precoding matrix V), the following holds

Pr
(∥∥∥D1/2Va

∥∥∥ <
√
β
)
= Pr

(∥∥∥D1/2Oa

∥∥∥ <
√
β
)
. (9)

IV. BOUND ON THE OUTAGE PROBABILITY OF PRECODED

INTEGER-FORCING

Define the dual lattice Λ∗ which is spanned by the matrix

(GT )−1 = D1/2VT . Recall that the rate of IF is given by

(8). Now, the successive minima of Λ and Λ∗ are related by

(Theorem 2.4 in [9])

λ1(Λ
∗)2λ2Nt

(Λ)2 ≤ 2Nt + 3

4
γ∗
2Nt

2, (10)

where γn is Hermite’s constant. Therefore, we may express

the achievable rates of IF via the dual lattice as follows

RIF(D,V) > Nt log

(
λ2
1(Λ

∗)
2Nt+3

4 γ∗
2Nt

2

)
. (11)

Hermite’s constant is known only for dimensions 1 − 8 and

24. Since it has been never proved that γ2Nt
is monotonically

increasing, we define γ∗
2Nt

= max {γi : 1 ≤ i ≤ 2Nt}.
The tightest known bound for Hermite’s constant as derived

in [10] is

γ2Nt
≤ (2/π) · Γ (2 +Nt)

1/Nt . (12)

Since this is an increasing function of Nt, it follows that γ
∗
2Nt

is smaller than the r.h.s. of (12). This implies that

RIF(D,V) ≥ Nt log

(
λ2
1(Λ

∗)

α(Nt)

)
,

3In case Hc is drawn from an ensemble for which Vc is uniformly
distributed (equivalently, is drawn from the CUE), the precoding operation
is redundant.

4The COE is defined analogously to the CUE, for the case of real
orthonormal matrices [7].

where

α(Nt) =





2Nt+3
4 γ2

2Nt
, Nt = 2, 3, 4, 12

2Nt+3
4

(
2
πΓ (2 +Nt)

1/Nt

)2

, otherwise
.

(13)

For simplicity of notation, we henceforth denote C = CWI.

Defining ∆C = C −R, we have

Pr (RIF(D,V) < C −∆C)

≤ Pr

(
Nt log

(
λ2
1(Λ

∗)

α(Nt)

)
< C −∆C

)

= Pr
(
λ2
1(Λ

∗) < 2
C−∆C

Nt α(Nt)
)
.

We may now rewrite (4) as

PWC
out (C,∆C) = sup

D∈D(C)

Pr (RIF(D,V) < C −∆C)

where D(C) is the set of all diagonal matrices D, with

diagonal elements coming in pairs, such that det (D) = 2C .

Lemma 2. For any Nr×Nt complex channel with WI mutual

information C, i.e., D ∈ D(C), and for Vc drawn from the

CUE (inducing a real-valued precoding matrix V), we have

Pr (RIF(D,V) < C −∆C) ≤

∑

a∈A(β,dmin)

2Nt

(
2

C−∆C

Nt α(Nt)
)Nt−1/2

‖a‖2Nt−12C 2√
dmin

,

where

A(β, dmin) =

{
a : 0 < ‖a‖ <

√
β

dmin

}
,

with β = 2
C−∆C

Nt α(Nt) and dmin = min
i

Di,i.

Proof. For some β > 0, let us upper bound the probability

Pr
(
λ2
1(Λ

∗) < β
)
= Pr

(
λ1(Λ

∗) <
√
β
)
. Noting that the event{

λ1(Λ
∗) <

√
β
}
is equivalent to the event

⋃

a∈Z2Nt\{0}

{
||D1/2Va|| <

√
β
}

and applying the union bound gives

Pr
(
λ1(Λ

∗) <
√
β
)
<

∑

a∈Z2Nt\{0}
Pr

(∥∥∥D1/2Va

∥∥∥ <
√
β
)

=
∑

A(β,dmin)

Pr
(
‖D1/2Va‖ <

√
β
)
,

(14)

where the second inequality follows since whenever

‖a‖ ·
√
dmin ≥ √

β, we have Pr
(
‖D1/2Va‖ <

√
β
)
= 0.

Let S denote the unit sphere and denote

o‖a‖ ∼ Unif(S · ‖a‖). Recalling Lemma 1 and noting
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that Oa is equal in distribution to o‖a‖, it follows that

Pr
(
‖D1/2Va‖ <

√
β
)
= Pr

(
‖D1/2o‖a‖‖ <

√
β
)
. (15)

Now the probability appearing on the r.h.s. of (15)

has a simple geometric interpretation. Define an ellipsoid

with axes xi =
√
di · ‖a‖ and denote its surface area

by L(x1, x2, ..., x2Nt
). Then, the r.h.s. of (15) is the ra-

tio of the part of the surface area of an ellipsoid which

is contained inside a sphere of radius
√
β (denoted by

CAPell(x1, x2, ..., x2Nt
)) and the total surface area of the

ellipsoid. This is illustrated in Figure 1 for the case of two

real dimensions. We may rewrite (15) as

Pr
(
‖D1/2o‖a‖‖ <

√
β
)
=

CAPell(a1, a2, ..., a2Nt
)

L(a1, a2, ..., a2Nt
)

(16)

=
|D1/2S · ‖a‖ ∩

√
βS|∣∣D1/2S‖a‖

∣∣ . (17)

Neither the numerator nor the denominator of (17) has a

closed-form expression. In order to upper bound this ratio, we

upper bound the numerator and lower bound the denominator.

Using (54) and (57) in [11], we have

L(x1, x2, ..., x2Nt
) > Ω2Nt

‖a‖2Nt

2Nt∏

i=1

√
di

2Nt∑

i=1

1

‖a‖
√
di
,

(18)

where Ω2Nt
= πNt

Γ(1+Nt)
is the volume of a unit ball of

dimension 2Nt.

As an upper bound for the numerator, we take the en-

tire surface area of the sphere with radius
√
β. Recall-

ing that the surface area of a sphere of radius
√
β is

A2Nt

(√
β
)
= 2Nt

πNt

Γ(1+Nt)

√
β
2Nt−1

, we thus have

CAPell(x1, x2, ..., x2Nt
) ≤ A2Nt

(√
β
)
. (19)

Substituting (18), (19) into (17) yields
∑

A(β,dmin)

Pr
(
‖D1/2o‖a‖‖ <

√
β
)
<

∑

A(β,dmin)

2Nt
πNt

Γ(1+Nt)

√
β
2Nt−1

πNt

Γ(1+Nt)
‖a‖2Nt−12C 2√

dmin

.

Further substituting β = 2
C−∆C

Nt · α(Nt), we finally arrive at

Pr (RIF(D,V) < C −∆C)

≤
∑

A(β,dmin)

2Nt

(
2

C−∆C

Nt α(Nt)
)Nt−1/2

‖a‖2Nt−12C 2√
dmin

. (20)

The bound of Lemma 2 is depicted in Figure 2. Rather than

plotting the outage probability, its complement is depicted,

i.e., we depict the CDF. For given C and ∆C, Lemma 2

−4

−2

0

2

4

D
1/2S‖a‖

D
1/2S‖a‖ ∩

√

βS

Fig. 1. Illustration of the geometric objects appearing in (17-19).
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Fig. 2. Comparing Lemma 2 against empirical results for Nr × 2 complex
channels for various values of capacity.

was numerically calculated over a grid of singular values. For

each such vector of singular values.the summation of (20) is

computed. The worst-case outage probability over all vectors

of singular values from the grid is presented. In addition,

empirical results are also plotted, where for each vector of

singular values, a large number of random unitary matrices

was drawn and the outage probability was calculated. Then, the

worst-case outage probability over all tested singular values

(i.e., those belonging to the grid) is presented.

Lemma 2 provides an explicit bound on the outage probabil-

ity. Nonetheless, in order to calculate it, one needs to go over

all diagonal matrices in D(C) and for each diagonal matrix,

sum over all the relevant integer vectors in A(β, dmin). The
following theorem provides a simpler bound, also depicted in

Figure 2, that does not depend on capacity and hence can be

evaluated analytically for any number of antennas. The proof

appears in Appendix B of [8].

Theorem 1. For any Nr × Nt complex channel with WI

mutual information C, and forVc drawn from the CUE (which

induces a real-valued precoding matrix V), we have

PWC
out (C,∆C) ≤ c(Nt)2

−∆C ,

where c(Nt) is a constant that depends only on Nt.
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V. APPLICATION : UNIVERSAL GAP-TO-CAPACITY FOR

MULTI-USER CLOSED-LOOP MULTICAST USING P-IF

In closed-loop MIMO multicast, a transmitter equipped with

Nt transmit antennas wishes to send the same message to K
users, where user i is equipped with Ni antennas.

Even though channel state information is available at both

transmission ends, designing practical capacity-approaching

schemes for closed-loop multicast with K ≥ 3 users is

challenging as detailed in [12]. Specifically, to achieve a small

gap to capacity, the scheme of [12] requires utilizing space-

time coding with a large number of channel uses. The outage

bound derived above suggests that P-IF may be an attractive

practical closed-loop MIMO multicast scheme, allowing to

obtain a small gap to capacity with space-only precoding.

Denoting byHc,i the Ni×Nt channel matrix corresponding

to the i’th user and by H = {Hc,i}Ki=1 the set of channels,

the received signal at user i is

yc,i = Hc,ixc + zc,i. (21)

The multicast capacity is defined as the capacity of the

compound channel (21). It is attained by a Gaussian vector

input, where the mutual information is maximized over all

covariance matrices Q satisfying Tr(Q) ≤ Nt:

C(H) = max
Q:Tr(Q)≤Nt

min
Hc∈H

log det(I+HcQHH
c ).

We assume without loss of generality that the input covariance

matrix is the identity matrix.5

We note that for each user i there exists an αi ≥ 1 such

that Hc,i = αiH̆c,i, where
︸︸
H = {H̆}Ki=1 ∈ H(C(H)), i.e.,︸︸

H is contained in the (continuum) set of channels with the

same capacity C(H). Further, αi can be interpreted as excess

SNR which exists for user i. Since the achievable rate of IF is

monotonically increasing in SNR, it follows that the achievable

rates over the set of channels H can only be higher than over︸︸
H, which we next lower bound.

Let us consider applying the random precoded scheme of

Section IV to the compound channel set
︸︸
H. Define Ai(R) as

the event where a matrix Ṽc drawn from the CUE achieves a

desired target R for user i

Ai(R) =
{
Ṽc : RIF(Hc,i · Ṽc) ≥ R

}
.

We’re interested in the probability of achieving the target

rate for all users, i.e., Pr (∩Ai(R)). Using the union bound,

Pr (∩Ai(R)) ≥ 1−KPWC
out (C(H), R), (22)

where PWC
out (·) is defined in (4).

This provides a means to obtain a guaranteed achievable

closed-loop P-IF transmission rate RWC−CL(H). Namely,

5We may do so since the covariance shaping matrix Q1/2 may be absorbed

into the channel by defining the effective channel Ĥc,i = Hc,iQ
1/2. Thus,

C(H) = mini CWI(Ĥc,i). With a slight abuse of notation, we use Hc,i to
denote the effective channel.

RWC−CL(H) is the maximum rate R for which

PWC
out (C(H), R) ≤ 1/K. (23)

Substituting (23) in (22), we have for any R < RWC−CL(H),

Pr (∩Ai(R)) > 1−K · (1/K) = 0.

Thus, there exists a precoding matrix for which any target

rate R < RWC−CL(H) is achievable (via P-IF transmission)

for the compound channel (21). For example, in the case of

Nt = 2, using the tightest upper bound developed thus far

(Lemma 2), we get a guaranteed gap-to-capacity of 9.6, 10.2

and 10.5 bits for 2, 3, and 4 users, respectively.

Examining Lemma 2 reveals that there are two major

sources for looseness (see [8]). First, some terms in the

summation (14) may be dropped. Second, bounding via the

dual lattice induces a loss reflected in (10). This may be

circumvented for Nt = 2 using IF-SIC. Corollary 1 of

Lemma 3 in [8] addresses these two issues and for the example

above, tightens the gap-to-capacity to 3.24, 3.8 and 4.385 bits

for 2, 3, and 4 users, respectively.

To conclude, we used the probabilistic method to obtain

a universal guarantee on the gap-to capacity for closed-loop

MIMO multicast via P-IF . We note that in [13] it is numer-

ically demonstrated that the gap-to-capacity is in fact much

smaller when searching for the optimal precoding matrix.
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